Queuing Theory in Security Queuing Theory Framework **De-Synchronisation Attack Modelling in Real-Time** Protocols Using Queue Networks: Attacking the ISO/IEC 61850 Substation Automation Protocol James Wright Dr. Stephen Wolthusen Information Security Group Royal Holloway University of London james.wright.2015@rhul.ac.uk X.

 ${\tt stephen.wolthusen@rhul.ac.uk}$

October 10, 2017

ROYAL

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Table of Co	ontents			

- 2 Queuing Theory in Security
- 3 Queuing Theory Framework
- 4 De-synchronisation attack
- 5 Future Direction

The Problem ●○	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction	
Defining our Problem					

- Does the IEC 61850 and IEC 62351 standards meet the security and quality of service (QoS) promises laid out in its specification?
- If there are omissions, can they be exploited?
- Can these attacks still occur in a fully compliant implementation of the protocol?

The Problem ○●	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction	
The Protocol Problem					

- The assumption in the research community is that the security and QoS promises of Smart Grid communications protocols are consistent throughout. However, there is little work on verifying them.
- No one has checked if the security promises come into conflict with the QoS requirements.
- Making sure that these promises are true could prevent some theorised attacks.

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Table of Co	ontents			

2 Queuing Theory in Security

3 Queuing Theory Framework

4 De-synchronisation attack

The Problem 00	Queuing Theory in Security •	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Queuing T	heory in Security			

- Queuing theory is good tool for modelling Denial of Service (DoS) attacks.
- Most DoS models provide limited insight as most of them rely on M/M/1 queues or Jackson Networks.
- However, there have been some features from the literature that have been included in the framework that is being developed.

The Problem 00	Queuing Theory in Security •	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Queuing T	heory in Security			

- Queuing theory is good tool for modelling Denial of Service (DoS) attacks.
- Most DoS models provide limited insight as most of them rely on M/M/1 queues or Jackson Networks.
- However, there have been some features from the literature that have been included in the framework that is being developed.
- 1 Split state spaces
- 2 Limited capacity queues
- **3** Non-exponential probability distributions.

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Table of Co	ontents			

- 2 Queuing Theory in Security
- **3** Queuing Theory Framework
- 4 De-synchronisation attack

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework •00000	De-synchronisation attack 000	Future Direction
Overview				

- The framework uses a network of truncated M/M/1/K queues, which provides probabilistic state exploration methodology. The probabilities of which is calculated using continuous time Markov Chains (CTMC).
- The assumptions made by the framework are:-

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework •00000	De-synchronisation attack 000	Future Direction
Overview				

- The framework uses a network of truncated M/M/1/K queues, which provides probabilistic state exploration methodology. The probabilities of which is calculated using continuous time Markov Chains (CTMC).
- The assumptions made by the framework are:-
 - **1** First-In-First-Out (FIFO) discipline for processing packets.
 - 2 Uses the Blocked-at-Service discipline.
 - **B** The effective probability distribution describing the rate at which packets are processed and unblocked are exponential distributions, but the sum of the distributions isn't.
 - 4 That the transition between states is memoryless.

The Problem	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack	Future Direction
The Probab	ility of Queuing T	heory		

The unique probabilities of the steady state of the network can be found using the global balance equation, assuming the system's state is:-

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
The Probat	pility of Queuing T	heory		

- The unique probabilities of the steady state of the network can be found using the global balance equation, assuming the system's state is:-
 - **1** Independent of time.
 - **2** Independent of the initial state vector.
 - **3** The system is ergodic.

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 0●0000	De-synchronisation attack 000	Future Direction		
The Probability of Queuing Theory						

- The unique probabilities of the steady state of the network can be found using the global balance equation, assuming the system's state is:-
 - **1** Independent of time.
 - 2 Independent of the initial state vector.
 - 3 The system is ergodic.

$$\sum_{j\in\mathcal{I}}\pi_j q_{ji} = \pi_j \sum_{j\in\mathcal{I}} q_{ij}$$
(1)

$$\mathbf{D} = \pi \mathbf{Q} \tag{2}$$

$$\sum \pi_i = 1. \tag{3}$$

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 00●000	De-synchronisation attack 000	Future Direction
The Topo	logical Space			

- The framework must calculate the parameters that govern how each queue in the network performs.
- The framework assumes for each queue that *a* + *b* ≤ *c* & *a* + *b* + *w* ≤ *K*. As well as packets not returning to previous queues.
- The exogenous parameters must be set for each node. They are:

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 00●000	De-synchronisation attack 000	Future Direction
The Topol	logical Space			

- The framework must calculate the parameters that govern how each queue in the network performs.
- The framework assumes for each queue that $a + b \le c \& a + b + w \le K$. As well as packets not returning to previous queues.
- The exogenous parameters must be set for each node. They are:

Parameter	Description
Ki	Maximum capacity
μ_i	Service rate
γ_i	External arrival rate
$\phi(i,1)$	Average number of distinct target queues
P _{ij}	Probability of packet transmission

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 000●00	De-synchronisation attack 000	Future Direction
The Topol	ogical Space conti	nued		

The endogenous variables can be calculated using the non-linear equations:

J. Wright 11/21

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction

The Topological Space continued

The endogenous variables can be calculated using the non-linear equations:

Variable	Description
$P(N_i = K_i) = rac{(1- ho_i) ho_i^{K_i}}{1- ho_i^{K_i+1}}$	Probability of being full
$\lambda_i = rac{\lambda_i^{eff}}{1 - P(N_i = K_i)}$ $\lambda_i^{eff} = \gamma_i (1 - P(N_i = K_i)) + \sum_i p_{ii} \lambda_i^{eff}$	Total arrival rate Effective arrival rate
$\mathcal{P}_{i} = \sum_{j} p_{ij} P(N_{j} = K_{j})$	Probability being blocked
$rac{1}{\widetilde{\mu^a_i}} = \sum_{j \in \mathcal{I}^+} rac{\lambda_j^{ ext{eff}}}{\lambda_i^{ ext{eff}} \mu_i^{ ext{eff}}}$	Common acceptance rate
$rac{1}{\mu_i^{ ext{eff}}} = rac{1}{\mu_i} + rac{\mathcal{P}_i}{\mu_i^3 \phi(i,1)}$	Effective service rate

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 0000●0	De-synchronisation attack 000	Future Direction
The State S	Space			

The framework state space shows the probability of the each queue having a specific number of packets.

$$\mathcal{I} = \{(k_1, ..., k_N) \in \mathbb{N}^N\}$$
(4)

In this state space there are three types of transitions between states:

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 0000●0	De-synchronisation attack 000	Future Direction
The State	Space			

The framework state space shows the probability of the each queue having a specific number of packets.

$$\mathcal{I} = \{ (k_1, ..., k_N) \in \mathbb{N}^N \}$$
(4)

In this state space there are three types of transitions between states:

Initial state s	New state <i>t</i>	Rate <i>q_{st}</i>	Conditions
(<i>i</i> ,)	(i + 1,)	λ_i	$p_{0i} eq 0$ & $N_i \leq k_i - 1$
(, <i>i</i>)	(, i-1)	μ_i^{eff}	$p_{0i} eq 0$ & $N_i \geq 1$
(, <i>i</i> ,, <i>j</i> ,)	(, i-1,, j+1,)	μ_i^{eff}	$p_{ij} eq 0 \ \& \ N_i \geq 1 \ \& \ N_j \leq k_i - 1$

The State Space	The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework 0000●0	De-synchronisation attack	Future Direction
The State Space					
	The State S	pace			

The framework state space shows the probability of the each queue having a specific number of packets.

$$\mathcal{I} = \{ (k_1, ..., k_N) \in \mathbb{N}^N \}$$
(4)

In this state space there are three types of transitions between states:

Initial state s	New state <i>t</i>	Rate <i>q_{st}</i>	Conditions
(<i>i</i> ,)	(i + 1,)	λ_i	$p_{0i} eq 0$ & $N_i \leq k_i - 1$
(, <i>i</i>)	(, i-1)	μ_i^{eff}	$p_{0i} eq 0$ & $N_i \geq 1$
(, <i>i</i> ,, <i>j</i> ,)	(, i-1,, j+1,)	μ_i^{eff}	$p_{ij} eq 0 \& N_i \geq 1 \& N_j \leq k_i - 1$

The marginal probability in this state space is

$$\pi_i(k) = \sum \pi(k_1, ..., k_N)$$
 (5)

The Problem	Queuing Theory in Security O	Queuing Theory Framework	De-synchronisation attack	Future Direction
Performance	e Metrics			
From	the marginal probabiliti	ies performance metrics	can be calculated.	

The Problem	Queuing Theory in Security 0	Queuing Theory Framework 00000●	De-synchronisation attack	Future Direction
Performance	e Metrics			

From the marginal probabilities performance metrics can be calculated.

Performance Metric	Equation
Traffic Intensity	$ ho_i = \sum_{k=1}^k \pi_i(k)$
Throughput	$\lambda_i = \sum_{k=1}^k \pi_i(k) \mu_i^{eff}$
Total Throughput	$\lambda = \sum_{i=1}^{N} \lambda_{0i}$
Mean Number of Packets	$ar{k_i} = \sum_{k=1}^k k \pi_i(k)$
Mean Queue Length	$ar{q}_i = \sum_{k=c_i}^k (k-c_i) \pi_i(k)$
Mean Response Time	$\bar{T}_i = rac{\bar{k}_i}{\lambda_i}$
Mean Wait Time	$ar{W}_i = ar{\mathcal{T}}_i - rac{1}{\mu_i^{eff}}$
Mean Number of visits	$e_i = \frac{\lambda_i}{\lambda}$
Relative Utilisation	$x_i = \frac{e_i}{\mu_i^{eff}}$

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack	Future Direction
Table of Co	ontents			

- 2 Queuing Theory in Security
- 3 Queuing Theory Framework

4 De-synchronisation attack

The Problem	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack •00	Future Direction
The Setup -	· Part 1			

- The attack causes the client's and server's state machines to become de-synchronised.
- This is achieved by either increasing or decreasing the rate at which the server receives the oper req[TestOK] message.
- The de-synchronisation of state occurs because the standard can be interpreted as not requiring the server to send out a *timeout* message to the client.
- The adversary in this attack is the same the symbolic one described by Dolev-Yao model.

The Prob 00		Queuing Th 0		Queuing Theory Framework	De-synchronisation attack ○●○	Future Direction
	~	_	-			

The Setup - Part 2

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 00●	Future Direction
The Result				

J. Wright

The Problem 00	Queuing Theory in Security 0	Queuing Theory Framework	De-synchronisation attack 000	Future Direction
Table of C	Contents			

- 2 Queuing Theory in Security
- 3 Queuing Theory Framework
- 4 De-synchronisation attack

The Problem 00	Queuing Theory in Security o	Queuing Theory Framework	De-synchronisation attack 000	Future Direction ●00
Future Dire	ction-Framework			

- Include the ability to calculate conditional probabilities of events.
- Include state spaces of the possible internal states of each queue.
- Include packet dropping in the model.

00 0	ing Theory in Security	Queuing Theory Framework	De-synchronisation attack 000	Future Direction ○●○
Future Directio	on-Analysis			

- Develop weaker adversary models.
- Generate a taxonomy of attacks against Smart Grid protocols.
- Find instances of the attacks with IEC 61850 and IEC 62351.

The Problem	Queuing Theory in Security	Queuing Theory Framework	De-synchronisation attack	Future Direction
00	0		000	00●

Questions?