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RESEARCH BACKGROUND

Railway infrastructures have been repeatedly affected by disasters,
either natural or man-made

Examples in the UK

» Tube disruption: coordinated suicide bomb attacks (CBBC Newsround 2015)

» Euston Station closure: a fire friggering a power cut (The Telegraph 2017)

» London Bridge Rail and Tube disruption: preventive measure due to a security alert
(Evening Standard 2017)



RESEARCH BACKGROUND

Emerging issues

What are the most critical elements of the system whose disruption would
significantly degrade the system’s normal functioning?

Approaches
» Vulnerability Metrics

» Interdiction Models




VULNERABILITY METRICS

Aim of Vulnerability Metrics

To devise a ranking of the most critical network components, which can
then be exploited to prioritize mitigation strategies

Examples of Vulnerability Metrics
» Maximal Flow (Murray 2013)
» Shortest Path (Murray 2013)
» Connectivity (Murray 2013)
» System Flow (Murray 2013)

» Network Importance (Balijepalli and Oppong 2014; Jenelius, Petersen, and
Mattsson 2006)

» Robustness (Balijepalli and Oppong 2014; Scott et al. 2006)




VULNERABILITY METRICS

Path length-driven metrics

» Node Betweenness (NB)
» Network Topological Efficiency (E) (Sum, Zhao, and

Connectivity-driven metrics

» Node Degree (ND) Lu 2015):
» Network Accessibility (NA) (OQuyang et al. 2014): F=1/n(n—-1) Ss,d=11n&1 /SPlsd
NA=1/n(n—1) Yi=1TniEnldisrli where srlsd  is the length of the shortest path
connecting nodes s and
where 72 is the number of network nodes (stations) » Node Vulnerability (NV):
and nldisrTi is the number of nodes that can be NV()=E(0)-ET (2)

reached from node 7/ after an attack

Flow-driven metrics
- Passenger Flow Influence (PFI) (Sum, Zhao, and Lu 20195):

where OF\ll’, DF\[I', and /I are the generated, attracted and intercepted flow for node [
respectively




INTERDICTION MODELS

Aim of Interdiction Models

To identify the most critical network components, the ones whose disruption would
inflict the most serious damage to the system

Interdiction Models Applications
» Military purposes (Fulkerson 1977; Wollmer 1964)
» Service and supply chain systems (Church, Scaparra, and Middleton 2004)

» Network connectivity and cohesiveness (Addis, Di Summa, and Grosso 2013;
Arulselvan et al. 2009; Granata, Steeger, and Rebbennack 2013)

Detailed Surveys on Interdiction Models (Esposito Amideo and Scaparra 2017; Sullivan,
Aultman-Hall, and Novak 2009)




INTERDICTION MODELS

The Path Interdiction Problem (PIP)

S.T.

Zisd <) iEeN(p) T#EXL V s,deN, peP(sd)
Visd <(1-Zlsd )LPlsd V s,deN

Bi-objective function

Maximum D Nodes are Disrupted
Path Disruption

Path/Connectivity Link
Path threshold

Zlsd €40,1) V s, deEN ]
Visd >0 V sdeN >
Xlie{0,1} vV ienN

Variable Domains



INTERDICTION MODELS

The Flow Interdiction Problem (FIP)
(Matisziw and Murray 2009)

s.T.

V s,deN, peP(sd)

Zlsdef0,1} V s,deN
Xlief0,1} VY iEN

Total Disrupted Flow Maximization

Maximum D Nodes are Disrupted

Path Disruption

Binary Variables



LONDON UNDERGROUND: A CASE STUDY
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LONDON UNDERGROUND: A CASE STUDY

Static Ranking vs. Optimization/1
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LONDON UNDERGROUND: A CASE STUDY

Static Ranking vs. Optimization/2

Metrics Comparison

NA ND NV NB PFI
Baker Street St Pancras Green Park Oxford Circus BankMonument
St Pancras Baker Street Bond Street Bond Street Oxford Circus
Green Park Oxford Circus Oxford Circus Green Park St Pancras
Bond Street Embankment Baker Street Tottenham Court Road Green Park
BankMonument Farringdon St Pancras Holborn Waterloo
Oxford Circus Green Park Holborn Baker Street Victoria
Holborn Edgware Road BankMonument St Pancras Baker Street
Embankment Barbican Embankment BankMonument Bond Street
Marble Arch Euston Square Tottenham Court Road Westminster Euston
Warren Street Great Portland Street Leicester Square Marble Arch Warren Street

Table 1. Ten most critical stations for each metric

Models Comparison

PIP(1) PIP(0) FIP

Station Disr. Station Disr. Station Disr.
Green Park 9 Green Park 10 BankMonument 10
Oxford Circus 9 Oxford Circus 9 St Pancras 8
St Pancras 8 BankMonument 8 Embankment 7
BankMonument 7 Embankment 7 Green Park 7
Embankment 6 Holborn 6 Oxford Circus 7
Baker Street 5 Notting Hill Gate 5 Leicester Square 5
Notting Hill Gate 5 Baker Street 4 Notting Hill Gate 3
Holborn 3 St Pancras 3 Victoria 3
South Kensington 2 South Kensington 2 Baker Street 2

Leicester Square 1 Leicester Square 1 South Kensington 2
Table 2. Ten most frequently disrupted stations for each optimization model
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CONCLUSIONS

This conftribution investigated two alternative approaches to evaluate urban rail transit
systems vulnerability:

» Vulnerability Metrics
» Interdiction Models

Vulnerability metrics fend to underestimate the real impact of disruptive events due to
their inability to capture system components’ interaction hence, interdiction models are
more reliable tools

Further research directions:
» Disruption impact on other performance criteria (e.g. cohesiveness (Veremyeyv et al. 2014))
» Vulnerability assessment of other infrastructures (e.g., road networks, energy grids)
» Bi-level programs to devise effective protection strategies
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ANY QUESTIONS?




