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RESEARCH BACKGROUND 

Railway infrastructures have been repeatedly affected by disasters, 
either natural or man-made 

 

Examples in the UK 
 

�  Tube disruption: coordinated suicide bomb attacks (CBBC Newsround 2015) 

 

�  Euston Station closure: a fire triggering a power cut (The Telegraph 2017) 

�  London Bridge Rail and Tube disruption: preventive measure due to a security alert 
(Evening Standard 2017) 



RESEARCH BACKGROUND 

Emerging issues 

What are the most critical elements of the system whose disruption would 
significantly degrade the system’s normal functioning? 

 

 

Approaches 

� Vulnerability Metrics 

�  Interdiction Models 

 

 

 



VULNERABILITY METRICS 

Aim of Vulnerability Metrics 

To devise a ranking of the most critical network components, which can 
then be exploited to prioritize mitigation strategies 

 

Examples of Vulnerability Metrics 
�  Maximal Flow (Murray 2013) 
�  Shortest Path (Murray 2013) 
�  Connectivity (Murray 2013) 
�  System Flow (Murray 2013) 
�  Network Importance (Balijepalli and Oppong 2014; Jenelius, Petersen, and 

Mattsson 2006) 
�  Robustness (Balijepalli and Oppong 2014; Scott et al. 2006) 

 



VULNERABILITY METRICS 

Connectivity-driven metrics 

�  Node Degree (ND) 

�  Network Accessibility (NA) (Ouyang et al. 2014): 

𝑁𝐴=   1/𝑛(𝑛−1) ∑𝑖=1↑𝑛▒𝑛↓𝑑𝑖𝑠𝑟↑𝑖   

where 𝑛 is the number of network nodes (stations)  is the number of network nodes (stations) 
and 𝑛↓𝑑𝑖𝑠𝑟↑𝑖  is the number of nodes that can be 
reached from node 𝑖 after an attack  after an attack 

Path length-driven metrics 

�  Node Betweenness (NB) 

�  Network Topological Efficiency (E) (Sum, Zhao, and 
Lu 2015): 

𝐸=   1/𝑛(𝑛−1) ∑𝑠,𝑑=1↑𝑛▒1/𝑆𝑃↓𝑠𝑑    

where  𝑆𝑃↓𝑠𝑑   is the length of the shortest path 
connecting nodes 𝑠 and 𝑑  and 𝑑  

�  Node Vulnerability (NV): 

𝑁𝑉(𝑖)=𝐸(𝑜)− 𝐸↑′ (𝑖)   
 

Flow-driven metrics 
•  Passenger Flow Influence (PFI) (Sum, Zhao, and Lu 2015):  

𝑃𝐹𝐼=  ∑↑▒𝑂𝐹↓𝑖 + 𝐷𝐹↓𝑖 + 𝐼𝐹↓𝑖   
where 𝑂𝐹↓𝑖 , 𝐷𝐹↓𝑖 , and 𝐼𝐹↓𝑖  are the generated, attracted and intercepted flow for node 𝑖, , 
respectively 
 



INTERDICTION MODELS 

Aim of Interdiction Models 

To identify the most critical network components, the ones whose disruption would 
inflict the most serious damage to the system 

 

Interdiction Models Applications 
�  Military purposes (Fulkerson 1977; Wollmer 1964) 

�  Service and supply chain systems (Church, Scaparra, and Middleton 2004) 

�  Network connectivity and cohesiveness (Addis, Di Summa, and Grosso 2013; 
Arulselvan et al. 2009; Granata, Steeger, and Rebennack 2013) 

 

Detailed Surveys on Interdiction Models (Esposito Amideo and Scaparra 2017; Sullivan, 
Aultman-Hall, and Novak 2009) 



INTERDICTION MODELS 

The Path Interdiction Problem (PIP)  
 

𝑚𝑎𝑥  𝑧=  ∑𝑠∈𝑁↑▒∑𝑑∈𝑁↑▒(𝛼𝑍↓𝑠𝑑 +(1−𝛼  ) 𝐾↓𝑠𝑑 𝑌↓𝑠𝑑 ) 
s.t. 

 ∑𝑖∈𝑁↑▒𝑋↓𝑖 ≤ 𝐷  

 𝑍↓𝑠𝑑 ≤∑𝑖∈𝑁(𝑝)↑▒𝑋↓𝑖                                   ∀  𝑠,𝑑∈𝑁,  𝑝∈𝑃(𝑠𝑑)  

 𝑌↓𝑠𝑑 ≤(1− 𝑍↓𝑠𝑑 )𝐿𝑃↓𝑠𝑑                   ∀  𝑠,𝑑∈𝑁

                𝑌↓𝑠𝑑 ≤∑𝑖∈𝑁(𝑝)↑▒𝛽↓𝑠𝑑 𝑋↓𝑖 + 𝑙↓𝑝     ∀  𝑠,𝑑∈𝑁,  𝑝∈𝑃(𝑠𝑑) 
      𝑍↓𝑠𝑑 ∈{0,1}                                                        ∀  𝑠,𝑑∈𝑁

 𝑌↓𝑠𝑑 ≥0                                                                    ∀  𝑠,𝑑∈𝑁  

       𝑋↓𝑖 ∈{0,1}                                                          ∀  𝑖∈𝑁  

Bi-objective function 

Path/Connectivity Link 

Path threshold 

Variable Domains 

Maximum D Nodes are Disrupted 

Path Disruption 



INTERDICTION MODELS 

The Flow Interdiction Problem (FIP)  
(Matisziw and Murray 2009) 
 

𝑚𝑎𝑥  𝑧=  ∑𝑠∈𝑁↑▒∑𝑑∈𝑁↑▒𝑓↓𝑠𝑑 𝑍↓𝑠𝑑    
s.t. 

 ∑𝑖∈𝑁↑▒𝑋↓𝑖 ≤ 𝐷  

 𝑍↓𝑠𝑑 ≤∑𝑖∈𝑁(𝑝)↑▒𝑋↓𝑖                                   ∀  𝑠,𝑑∈𝑁,  𝑝∈𝑃(𝑠𝑑)  

 𝑍↓𝑠𝑑 ∈{0,1}                                                      ∀  𝑠,𝑑∈𝑁

 𝑋↓𝑖 ∈{0,1}                                                          ∀  𝑖∈𝑁  

Total Disrupted Flow Maximization 

Maximum D Nodes are Disrupted 

Path Disruption 

Binary Variables 



LONDON UNDERGROUND: A CASE STUDY 

Network Data: 
•  51 nodes (stations) 
•  178 directed arcs (links) 
•  10 metro lines 



LONDON UNDERGROUND: A CASE STUDY 

Static Ranking vs. Optimization/1 



LONDON UNDERGROUND: A CASE STUDY 

Static Ranking vs. Optimization/2 

Metrics Comparison Models Comparison 



LONDON UNDERGROUND: A CASE STUDY 

The Ten Most Frequently Disrupted Stations for each Interdiction Model 



CONCLUSIONS 

This contribution investigated two alternative approaches to evaluate urban rail transit 
systems vulnerability: 

�  Vulnerability Metrics 
�  Interdiction Models 

 
Vulnerability metrics tend to underestimate the real impact of disruptive events due to 
their inability to capture system components’ interaction hence, interdiction models are 
more reliable tools 

 
Further research directions: 

�  Disruption impact on other performance criteria (e.g. cohesiveness (Veremyev et al. 2014)) 
�  Vulnerability assessment of other infrastructures (e.g., road networks, energy grids) 
�  Bi-level programs to devise effective protection strategies 
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ANY QUESTIONS? 


